The Transcendental Motive of a Cubic Fourfold

Link identifier archive #link-archive-thumb-soap-37382
The Transcendental Motive of a Cubic Fourfold
Giovedì 16 gennaio  alle ore 14.30, il Diaprtimento di Matematica e Fisica propone il seminario  di geometria dal titolo " The Transcendental Motive of a Cubic Fourfold", svolto da prof. Claudio Pedrini dell'Università di Genova.

Abstract
We introduce the transcendental motive t(X) of a complex cubic fourfold X in P5 and relate the 
existence of a K3 surface S, such that the (twisted) transcendental motive of S is isomorphic to 
t(X), with the conjectures about the rationality of X. We also show that the motive of the Fano 
variety F(X) and of the 8-dimensional hyperk alher variety Z, constructed by Ch. Lehn, M. Lehn, 
Ch. Sorger and D. van Straten, lie in the same subcategory of the Chow motives generated by
t(X) and the Lefschetz motive L.

Il seminario si svolgerà presso il Dipartimento di Matematica e Fisica
Largo San Leonardo Murialdo,1 - Pal.C - Aula 211
 
Link identifier #identifier__31308-1Link identifier #identifier__28725-2Link identifier #identifier__70974-3Link identifier #identifier__20460-4

This post is also available in: Link identifier #identifier__28767-5enEng