Abstract:
As is well known, many materials freeze at low temperatures. Microscopically, this means that their molecules form a phase where there is long range order in their positions. Despite their ubiquity, proving that these freezing transitions occur in realistic microscopic models has been a significant challenge, and it remains an open problem in continuum models at positive temperatures. In this talk, I will focus on lattice particle models, in which
the positions of particles are discrete, and discuss a general criterion under which crystallization can be proved to occur. The class of models that the criterion applies to are those in which there is *no sliding*, that is, particles are largely locked in place when the density is large. The tool used in the proof is Pirogov-Sinai theory and cluster expansions. I will present the criterion in its general formulation, and discuss some concrete examples. This is joint work with Qidong He and Joel L. Lebowitz.
Il seminario avrà luogo in presenza presso il Dipartimento di Matematica e Fisica
Lungotevere Dante 376 - Aula M4
This post is also available in: Link identifier #identifier__168829-5Eng