Topology of univoque sets in real base expansions

Link identifier archive #link-archive-thumb-soap-35057
Topology of univoque sets in real base expansions
Martedì 17 maggio 2022 alle ore 14:30, presso il Dipartimento di Matematica e Fisica (Aula 311), si terrà il seminario del prof. Vilmos Komornik (Université de Strasbourg) dal titolo "Topology of univoque sets in real base expansions".

L'evento potrà essere seguito in diretta streaming registrandosi  al OneWorldNumeration seminar al seguente Link identifier #identifier__160439-1link.

Abstract
We report on a recent joint paper with Martijn de Vries and Paola Loreti. Given a positive integer M and a real number 1 < q ≤ M+1, an expansion of a real number x ∈ [0,M/(q-1)] over the alphabet A = {0,1,...,M} is a sequence (c_i) ∈ A^N such that x = Σ_{k=1}^∞ c_i q^{-i}. Generalizing many earlier results, we investigate the topological properties of the set Uq consisting of numbers x having a unique expansion of this form, and the combinatorial properties of the set U'q consisting of their corresponding expansions.

 
Link identifier #identifier__1576-1Link identifier #identifier__38680-2Link identifier #identifier__60458-3Link identifier #identifier__25069-4

This post is also available in: Link identifier #identifier__2881-5enEng