20402075 - AL210 - ALGEBRA 2

Introduce the basic notions and techniques of abstract algebra through the study of the first properties of fundamental algebraic structures: groups, rings and fields.

Curriculum

scheda docente | materiale didattico

Programma

Groups: symmetri, dihedral, cyclic groups. Subgroups. Cosets and Lagrange theorem. Homomorphisms. Normal subgroups and quotient groups. Homomorphism theorems. Actions of a group on a set. Orbits and stabilizers theorems. Sylow theorems and their applications. Rings: Rings, domains and fields. Sub-rings, subfields and ideals. Homomorphisms. Quotient rings. Homomorphism theorems. Prime and maximum ideals. The quotient field of a domain. Divisibility in a domain. Fields: Field extensions (simple, algebraic and transcendental). Splitting field of a polynomial. Finite fields.

Testi Adottati

Lecture notes

Bibliografia Di Riferimento

Hungerford: Algebra. Graduate Texts in Mathematics, 73. Springer-Verlag, New York-Berlin, 1980. D. Dikranjan - M.S. Lucido, Aritmetica e algebra, Liguori. I. Herstein, Algebra - Editori Riuniti (2010). G.M. Piacentini Cattaneo, Algebra, un approccio algoritmico, Decibel -Zanichelli. Dummit - Foote. Abstract algebra. Prentice Hall, Inc., Englewood Cliffs, NJ 1991.

Modalità Erogazione

Lectures by the teacher with sessions of exercises only. In any case, the instructions of the University regarding the possibility of transmitting the lessons on Microsoft Teams will be followed if this becomes necessary for the Covid emergency.

Modalità Frequenza

Attending is not mandatory but strongly recommended

Modalità Valutazione

Written and oral exams. Two tests during the semester can replace the written exam.

scheda docente | materiale didattico

Programma

Groups: symmetri, dihedral, cyclic groups. Subgroups. Cosets and Lagrange theorem. Homomorphisms. Normal subgroups and quotient groups. Homomorphism theorems. Actions of a group on a set. Orbits and stabilizers theorems. Sylow theorems and their applications. Rings: Rings, domains and fields. Sub-rings, subfields and ideals. Homomorphisms. Quotient rings. Homomorphism theorems. Prime and maximum ideals. The quotient field of a domain. Divisibility in a domain. Fields: Field extensions (simple, algebraic and transcendental). Splitting field of a polynomial. Finite fields.

Testi Adottati

Lecture notes

Bibliografia Di Riferimento

Hungerford: Algebra. Graduate Texts in Mathematics, 73. Springer-Verlag, New York-Berlin, 1980. D. Dikranjan - M.S. Lucido, Aritmetica e algebra, Liguori. I. Herstein, Algebra - Editori Riuniti (2010). G.M. Piacentini Cattaneo, Algebra, un approccio algoritmico, Decibel -Zanichelli. Dummit - Foote. Abstract algebra. Prentice Hall, Inc., Englewood Cliffs, NJ 1991.

Modalità Erogazione

Lectures by the teacher with sessions of exercises only. In any case, the instructions of the University regarding the possibility of transmitting the lessons on Microsoft Teams will be followed if this becomes necessary for the Covid emergency.

Modalità Frequenza

Attending is not mandatory but strongly recommended

Modalità Valutazione

Written and oral exams. Two tests during the semester can replace the written exam.