20410009 - ELEMENTI DI GEOMETRIA

Nel corso vengono insegnate agli studenti le basi dell'algebra lineare e della geometria analitica nel piano e nello spazio. In particolare vengono sviluppate le nozioni essenziali per risolvere un sistema di equazioni lineari, per calcolare il rango di una matrice e di altri suoi invarianti. Per quanto riguarda le nozioni di geometria analitica si porrà particolare attenzione alla nozione di prodotto scalare e allo studio di coniche e quadriche
scheda docente | materiale didattico

Programma

Sistemi di equazioni lineari e matrici riduzione per righe di una matrice, risoluzione dei sistemi di equazioni lineari, prodotto di matrici, rango di una matrice, matrici invertibili e loro costruzione, teorema di Rouchè Capelli - Matrici quadrate e determinanti Definizione di determinante, proprietà dei determinanti, calcolo di un determinante, determinanti e matrici invertibili, - Spazi vettoriali Vettori geometrici, definizione ed esempi di spazi vettoriali, indipendenza lineare di vettori, spazi vettoriali di dimensione finita, basi. E cambiamento di base - Prodotti scalari w spazi euclidei Prodotto scalare geometrico, prodotti scalari, perpendicolarità e basi ortogonali, basi ortonormali e matrici ortogonali, coordinate cartesiane su uno spazio euclideo, proprietà metriche fondamentali, isometrie del piano euclideo - Geometria nel piano e nello spazio Punti e rette nel piano, angolo tra due rette, formule di geometria piana, fasci di rette, circonferenze, punti rette e piani nello spazio, equazioni di rette, piani, sfere, circonferenze. - Applicazioni lineari Nucleo ed immagine di un' applicazione lineare, applicazioni lineari e matrici, operatori lineari, autovalori ed autovettori di un operatore lineare, polinomio caratteristico, ricerca degli autovalori e degli autovettori -Coniche e quadriche coniche e loro proprietà metriche, forme canoniche delle coniche, riduzione a forma canonica delle coniche, quadriche, forme canoniche euclidee delle quadriche

Testi Adottati

'Matrici e Vettori' di F. Flamini e A. Verra (Carocci Editore).

Ulteriori informazioni su altri testi utili per la consultazione e lo svolgimento di esercizi saranno fornite all' inizio del corso.

È prevista la distribuzione di alcune dispense.

Modalità Valutazione

esame finale scritto e orale